- 流量分析产品:可以帮助产品经理进行页面设计、功能改进和改版评估等
- 销售分析产品:可以帮助运营分析
这两个产品都是公司的必备,对公司各部门都有较大帮助:
- 帮助产品经理进行页面设计、功能改进和改版评估等;
- 帮助运营人员做用户分析、活动分析等;
- 帮助市场人员做投放分析优化等;
当公司某一块业务比较重要,又有专门的部门负责时,一般会把数据分析系统独立出来,比如:供应链分析系统;客服分析系统;会员分析系统;
2、算法类产品:通过数据的计算,直接更改页面的逻辑的产品,成为算法类产品;
比如:
个性化推荐;
搜索;
用户画像;
程序化购买广告等;
这两种是根据公司的情况来,区别并不是很明显,而且会不断演变
比如:对供应链支持的,可能最开始是销售分析系统里,一个库存分析的报表而已;
后来,加入了各种补货预警、成本分析等报表,就变得很复杂,独立出来成为系统。
3、 各部门都按自己的需求提取数据,会出现口径不统一的情况,比如一个部门和另一个部门的同一指标,出现不同解读。
4、 各部门自己提的数据需求,基本上总是会有漏的环节。
所以,这时候,需要有个懂的人,梳理各部门需求,汇总整理数据流程,将数据体系化,不然就乱了。
这种情况下,对数据产品经理的要求是:
1、要懂分析,不然就会变成一个只出报表的传话筒。
2、要懂数据的产生逻辑,要能建立一个业务模块的数据指标体系,不然,出来的东西会比较乱,可能迟迟上不了线;
还有另一种情况就是大数据团队招人。
这种一般是大数据团队,有自己的技术和算法人员,已经做出一定的成果(比如推荐系统最开始上线时,即使团队中没有产品经理,只有算法工程师,也是很容易产生比较好的推荐结果),得到了领导高层的认可。但是如何将算法,更好的服务于公司的商业,产生直接的销售结果,这是算法人员很难有精力去想的,就要招一个产品经理来。
这时候对产品经理的要求是:又要懂商业,人家就是找你来变现的,又要懂算法,又要懂产品,要求非常高。大家觉得大数据的产品经理比较贵,都是这种。
~~~~~~~~~~~~~倾向招什么样的 人?
1、 数据分析师出身。数据产品最好还是要提供解决方案,并不是说,业务人员告诉你他们碰到什么问题,你就能做出好的产品的。要心中有商业模型,有很多解决方案,看到时候需要提供哪一种。
这些方案累积的过程,大部分需要训练,可是谁有时间去训练呢,而数据分析人员的工作本身就是思考各种问题解决方案的过程,要想办法把数据的问题找出来,并且能够作为报告展现。所以招数据分析人员做产品经理是一个快速省事的办法。
如果我的团队中没有分析经历的,一般我都会让其去做几份分析报告,训练思路。
2、 业务人员出身,做过产品经理的,一般知道产品经理需要哪些数据,才能优化页面;做过市场的、运营的,知道哪些数据能够提升效果,有这种背景,我们也会需要;
3、 数据提取员:每个部门需要数据时,就会有一个提取人员,用sql从数据库中提取数据。这种职位我会推荐应届生去做,首先,了解公司后台各大系统的关系和产生数据,其次,了解业务部门的情况,还可以了解公司的发展重点。最主要是,他了解每个数据是怎么产生的,这是其他背景的产品经理没有的优势,开发很喜欢这样的人写的prd,不管业务方向对不对,至少需求是不用改的。
4、 算法产品经理,一般我会要求有数学背景的硕士,带起来很快,性价比高。
5、 其实还是看个人,因为我们现在的团队每个方向擅长的人都有,所以如果我觉得一个人比较有潜力,就招进来,让他挨个职位做一遍,就培养出来了。
二、分析类产品:
1. 定义和能力模型:
首先说定义:什么是分析类产品。
可以挖掘数据背后的价值,并通过数据的展示,为使用者提供帮助,即数据产品。
一个数据产品经理的能力模型如下:
- 数据分析的能力;
- 商业模型的理解能力;
- 需求分析和调研的能力;
- 数据展现的能力,即可视化的能力;
2. 数据分析的能力:
在我年轻的时候,在团队中处于打头阵的状态,基本上老大有什么新的产品了,会先派我去做。等我做的把坑趟的差不多了,就交给别人,换下一个产品,所以我真是做过很多产品和页面。后来总结出做分析产品的一个套路来,如下:
首先讲一个数据分析框架,这基本上被我适用于公司很多业务上:
这是一个数据分析师的经典的分析过程。首先,为这个部门收集一些信息,帮助制定关键指标,其次,监测指标完成的好坏,并发现问题,然后,分析影响KPI完成的原因。最后,给出解决方案。
数据产品经理要做的是什么呢?就是把这个框架中的每个过程总结出来,梳理清楚,每一步,都需要哪些数据、哪些指标,怎么展示,用图还是用表,用什么图。然后,再综合开发资源、上线时间等,最终决定产品是什么样。
我以淘宝给卖家做的一个产品为例,来讲解这个过程:这是一个给管理团队和运营团队看的日报:
- 首先,日常监测:他们选的是访客数、浏览量、实付金额、支付转化率、客单价、退款金额、服务态度评分七个指标;
我们给每个部门做产品时,都需要首先制定核心指标。有很多时候,业务部门自己会提需求,但业务部门只能想到最直接的,很可能他们部门很严重的问题,会漏掉。
从部门价值上来考虑:
- 资本方给公司的要求是什么?
- 哪些指标影响了估值?
- 你目前在分析的这个部门,可以承担哪些影响估值的指标?
- 哪些其他指标可以为这个指标服务?
从用户行为来考虑:
- 用户如何来到这个页面/这个流程?
- 他都进行了哪些操作
- 都经过了哪些步骤
- 从哪个环节流失?
- 整体流程上,用户最关心什么?他的时间?更好的服务?更多的选择?
当然,还有很多维度可以考虑。
这样分析下来,该部门的核心指标就找到了。
对于部门来说,核心指标是比较好找的,可以跟部门老大合计,看他侧重哪方面即可。
对于为管理层做决策来说,就相对难了一些,在国内现在的形势下,可以多了解资本市场的分析逻辑,多了解管理层的现在的关注重点。
因为即使管理人员,做企业时,也是摸着石头过河,也在不断的学习,可能这个阶段学习的是一种商业理论,在另一个阶段学习的是另一种商业理论。所以相关的商业理论要了解,才能给抽象成报表、甚至分析页面。我为此曾经学过很多,balabala的。
- 发现问题:达成情况、情况好坏;同比、环比、定基比;
继续看这个页面,数据分析方式怎么用到页面设计中。
同比:较上周同期;
环比:较前一日;
定基比:将行业中所有的卖家分层,用和该店类似的卖家的核心数据,来做对比,从而知道自己的优缺点。
定基比中,我见过最好的,是淘宝的产品。我当时在代运营公司,确实卖家就想知道,哪些跟自己差不多的,比自己好一些的卖家,他们的一些核心数据是什么样的,我的数据到底改善空间有多大。
当然作为平台,可以做的更好一点:比如,我们同省市的卖家,大概的数据是多少。像我们去山东谈酒类企业,他们其实就很关注其他山东的酒在网上的受认可程度。太大的品牌,给他们的借鉴意义毕竟小。
当指标和分析方式都比较多的时候,用户看到页面,就会看到很多数据,但是不知道看什么。这时候就要用一些可视化的方式,突出重点。比如,用红色叹号,将下降较多的指标标出来。
- 分析原因:在产品设计中,通常要把影响指标达成的原因,也列在这个页面上,以供使用者参考。当然影响因素会很多,所以产品经理首先要收集齐全影响因素,然后再把关键的、核心的因素挑出来。
比如某个地区的月初退货率忽然增长,就要收集原因,可能如下:
*管理:
** 当地销售人员刷单,为了达成上月业务目标,月初退货;
** 部门人员,有的比较能干,有的比较弱,导致了整体数据的达成不好;
* 商品:新上的商品质量不过关;
* 促销:邮费政策、价格政策的变动;
* 外部原因:
* 京东做了一场大促,把价格给打下来了;
* 忽然爆发了商品的替代品,原有的优势品类衰退;
* 天气原因:当地下了一场大雨,导致送货速度降低,顾客不满意;
* 广告投放合作方临时变化(可能)
这些原因,哪些可以量化呢?哪些发生的几率比较大,而现在并没有这样的数据可用查看?这些原因,在产品设计中,就可以做成数据下钻的报表,以方便了解详情;
如上图所示,拿红圈圈起来的,就是原因分析这一步在页面上的展示。当你看到一款商品数据有问题时,既可以进入商品温度计,查看商品的每个环节(标题、商品页面设计等)到哪哪里有问题,还可用进入单品分析,查看流量来源等;
- 解决方案:
一般来说,我们建议数据产品经理做到原因分析这一层,就足够了。因为解决方案没有一定之规,不仅跟公司战略有关,还和业务团队的leader喜好,部门的发展情况有关。如果没有一定的高度,可能做出来的并不是很好用,并且所以一般不建议产品经理直接做到解决方案这一步;
但是,如果能够做到,那么你整个的产品的质量和可用性,都会有较大提升。能够做到解决方案,说明你真的明白你的数据的价值是什么,用来解决什么。
解决方案分以下几类,
- 直接营销:在会员系统中,在不同的分析页面,配上不同的营销方式。点击可以对相应的用户进行营销;
- 管控:通过管理制度解决,比如,建立末位淘汰制,将打包能力差的人员淘汰,替换成打包能力强的人员,就可以提升打包时间,这样解决方案就是多一张监督打包人员的表;
- 预测:以现在这样的速度,预测未来会发生什么,需要做什么补救。这是我当初给仓储提的一个方案。具体忘了。
另外还有一些,是数据出来后,数据产品经理可以去推动的。
- 通过招聘解决:有一些问题,大家都看得到,为什么没有解决,很大程度是因为没有能做这些事情的人;
- 通过系统来解决:
- 将一些人工频繁操作的,做成系统,可以提升效能,节约成本;
- 用更智能的系统,替代掉原有的人工的模式;比如,首页的转化率比较低,试着将一些坑位变成千人千面,看是否能增加转化率;
- 通过战略来解决:比如,原有的模式是以采定销,采购人员认为什么好卖,就进什么货,这样的好处是可以压低进货价,坏处是积压库存;如果将整个商业模式改成以销定采,则可以根据市场需求,来确定进货量的多少,从而达到降低库存的目的;
- 提出解决方案,有一个非常重要的前提,就是找到解决方案的负责部门:
作为内部的分析产品,我们建议以部门为一个单位目标用户群体,比如:市场部、仓储部、客服部、运营部;毕竟,公司把一块业务流程让一个部门负责,本身一般意味着这块流程的独立性,并且说明有人为这块流程负责;
要点一:有人负责,这很重要。我们曾经分析过库存问题,当时已经很严重了,但是公司没有部门对此负责时,推动非常难。
要点二:有一些指标,大家都知道是核心指标,但是没有人负责,也许是因为有更重要的事,也许是因为没有想好如何将该目标拆解下去,分给哪个部门。
如果是前者,就要再找一些数据来,证明是否是核心指标,比如后来我们拿到了京东和聚美的库存周转率,这些数据都和酒仙网有鲜明的对比;
二、 需求调研:
以前给宝洁出数据方案时,满满200页ppt,全部都是商业模型和数学模型的讲解,我在做数据分析的时候,商业模型,和数据模型,用的都很多,但是当我做大数据后,整个的分析方式都变了,变得特别的简单、粗暴、直接,整理了以下几种常用的,基本可以覆盖一个不是很大的团队的分析方式:
- 流程;
- 抽样;
- 枚举;
- 已有数据分析;
1. 枚举法:
为什么先介绍这个方法呢?因为这是我们刚用这个办法,把搜索的点击率提升了30%。
枚举法是最基本的办法,单独的对某个节点,一般采用的是枚举问题法。其实非常简单,就是把所有的用户问题拖出来。
以搜索召回分析,(召回指把搜索词相关结果搜索出来。)主题是搜索词和搜索结果;
- 把所有搜索词列出来,按pv排序;
- 逐个搜索词解读其数据和特征,包括用户在什么样的情况下搜索这个词,这个属于什么词,是类目词还是品牌词,还是商品词,这个词下面的结果是否包含爆款,我们的爆款和其他平台同款是否有价格优势,和其他平台爆款是否有商品优势,努力通过这些数据还原出用户的真实使用场景和想法,并尝试推测这个数据产生的原因。在解读的同时,要随时记录发现的各种问题,用户哪些需求没有被满足。
- 根据上面步骤中发现的典型问题和场景、目标的推测,对搜索词做细致的划分。比如,原来没有想到用户喝酒有较强的地域属性,所以地域这个字段并没有在索引中,那么要加进去。比如,有一些酒有专有名词,这些名词喝酒的人知道,但是搜索不知道,那就要想办法告诉搜索,比如,老酒。比如一级庄二级庄三级装等,将不同的词划分出来,作为一个单独的词组;
- 拿这个词组中的一部分词进行后续的研究,和规则制定。
- 把词组中剩下的词扔到规则里,对规则进行验证,看是否能够正常召回。
这个方法看起来很简单,所以难的是执行,就是真的坐下来耐心的去看用户数据,去把自己的经验涌进来,我们后来做搜索的suggest、筛选条件时,都采用的同一样的办法。
为什么这是算法产品基础入门的方法呢?
因为数据分析报告,只能满足已有预设的情况,大大小小的突发情况,既来不及做分析报告,也来不及找出详细数据来查看。我们作为产品经理,大部分时候,都是在面对突发情况,做大大小小的决策,快速决定事情走向,判断建议的好坏,决定是否上线或回退,比如忽然发现原方案会导致性能问题,临时给另一种解决方案,比如开发和测试人员都建议其他方案,比如领导忽然问你竞品的新变动我们是不是也要采纳,这些都是几乎要立刻给出结论的。
全部评论
(3) 回帖