索引(Index)是帮助MySQL高效获取数据的数据结构。
B+ Tree 原理
1. 数据结构
它具有 B Tree(键、值、指针) 的平衡性,所有叶子节点位于同一层并且通过顺序访问指针来提高区间查询的性能。在 B+ Tree 中,一个节点中的 key 从左到右非递减排列。
1、非叶子节点,只存储键值信息,不存放数据,这样极大增加了存放索引的数据量。
2、 所有叶子节点之间都有一个链指针。对于区间查询时,不需要再从根节点开始,可直接定位到数据。
3、 数据记录都存放在叶子节点中。根据二叉树的特点,这个是顺序访问指针,提升了区间访问的性能。
通过这样的设计,一张千万级的表最多只需要3次磁盘交互就可以找出数据。
2.与二叉树的比较
二叉树:左子树的键值小于根结点,右子树的键值大于根结点,容易变成链表,
这棵二叉树的查询效率就低了。因此若想二叉树的查询效率尽可能高,需要这棵二叉树是平衡的,从而引出新的定义——平衡二叉树,或称AVL树。
平衡二叉树:它的任何节点的两个子树的高度差
3. 与红黑树的比较
红黑树等平衡树也可以用来实现索引,但是文件系统及数据库系统普遍采用 B+ Tree 作为索引结构,这是因为使用 B+ 树访问磁盘数据有更高的性能。
(一)B+ 树有更低的树高 平衡树的树高 O(h)=O(logdN),其中 d 为每个节点的出度。红黑树的出度为 2,而 B+ Tree 的出度一般都非常大,所以红黑树的树高 h 很明显比 B+ Tree 大非常多。
(二)磁盘访问原理:操作系统一般将内存和磁盘分割成固定大小的块,每一块称为一页,内存与磁盘以页为单位交换数据。数据库系统将索引的一个节点的大小设置为页的大小,使得一次 I/O 就能完全载入一个节点。如果数据不在同一个磁盘块上,那么通常需要移动制动手臂进行寻道,而制动手臂因为其物理结构导致了移动效率低下,从而增加磁盘数据读取时间。B+ 树相对于红黑树有更低的树高,进行寻道的次数与树高成正比,在同一个磁盘块上进行访问只需要很短的磁盘旋转时间,所以 B+ 树更适合磁盘数据的读取。
(三)磁盘预读特性:为了减少磁盘 I/O 操作,磁盘往往不是严格按需读取,而是每次都会预读。预读过程中,磁盘进行顺序读取,顺序读取不需要进行磁盘寻道,并且只需要很短的磁盘旋转时间,速度会非常快。并且可以利用预读特性,相邻的节点也能够被预先载入。
MySQL 索引
索引是在存储引擎层实现的,而不是在服务器层实现的,所以不同存储引擎具有不同的索引类型和实现。
1. B+Tree 索引
是大多数 MySQL 存储引擎的默认索引类型。因为不再需要进行全表扫描,只需要对树进行搜索即可,所以查找速度快很多。
因为 B+ Tree 的有序性,所以除了用于查找,还可以用于排序和分组。
可以指定多个列作为索引列,多个索引列共同组成键。适用于全键值、键值范围和键前缀查找,其中键前缀查找只适用于最左前缀查找。如果不是按照索引列的顺序进行查找,则无法使用索引。
InnoDB 的 B+Tree 索引分为主索引和辅助索引。主索引的叶子节点 data 域记录着完整的数据记录,这种索引方式被称为聚簇索引。因为无法把数据行存放在两个不同的地方,所以一个表只能有一个聚簇索引。
2. 哈希索引
哈希索引能以 O(1) 时间进行查找,但是失去了有序性:
- 无法用于排序与分组;
- 只支持精确查找,无法用于部分查找和范围查找。
InnoDB 存储引擎有一个特殊的功能叫“自适应哈希索引”,当某个索引值被使用的非常频繁时,会在 B+Tree 索引之上再创建一个哈希索引,这样就让 B+Tree 索引具有哈希索引的一些优点,比如快速的哈希查找。
3. 全文索引
4. 空间数据索引
MyISAM 存储引擎支持空间数据索引(R-Tree),可以用于地理数据存储。空间数据索引会从所有维度来索引数据,可以有效地使用任意维度来进行组合查询。必须使用 GIS 相关的函数来维护数据。
索引优化
1. 独立的列
在进行查询时,索引列不能是表达式的一部分,也不能是函数的参数,否则无法使用索引。
SELECT actor_id FROM sakila.actor WHERE actor_id + 1 = 5;
2. 多列索引
在需要使用多个列作为条件进行查询时,使用多列索引比使用多个单列索引性能更好。例如下面的语句中,最好把 actor_id 和 film_id 设置为多列索引。
SELECT film_id, actor_ id FROM sakila.film_actor WHERE actor_id = 1 AND film_id = 1;
3. 索引列的顺序
让选择性最强的索引列放在前面。索引的选择性是指:不重复的索引值和记录总数的比值。最大值为 1,此时每个记录都有唯一的索引与其对应。选择性越高,每个记录的区分度越高,查询效率也越高。
4. 前缀索引
对于 BLOB、TEXT 和 VARCHAR 类型的列,必须使用前缀索引,只索引开始的部分字符。前缀长度的选取需要根据索引选择性来确定。
5. 覆盖索引
索引包含所有需要查询的字段的值。
具有以下优点:
- 索引通常远小于数据行的大小,只读取索引能大大减少数据访问量。
- 一些存储引擎(例如 MyISAM)在内存中只缓存索引,而数据依赖于操作系统来缓存。因此,只访问索引可以不使用系统调用(通常比较费时)。
- 对于 InnoDB 引擎,若辅助索引能够覆盖查询,则无需访问主索引。
索引的优点
-
大大减少了服务器需要扫描的数据行数。帮助服务器避免进行排序和分组,以及避免创建临时表(B+Tree 索引是有序的,可以用于 ORDER BY 和 GROUP BY 操作。临时表主要是在排序和分组过程中创建,不需要排序和分组,也就不需要创建临时表)。将随机 I/O 变为顺序 I/O(B+Tree 索引是有序的,会将相邻的数据都存储在一起)。
索引的使用条件
-
对于非常小的表、大部分情况下简单的全表扫描比建立索引更高效;对于中到大型的表,索引就非常有效;
-
但是对于特大型的表,建立和维护索引的代价将会随之增长。这种情况下,需要用到一种技术可以直接区分出需要查询的一组数据,而不是一条记录一条记录地匹配,例如可以使用分区技术。
全部评论
(0) 回帖