第一题:找Good,每一个字符都只能使用一次,
思路:贪心策略,给已经拼过的Good的字符设置一个访问标记即可;
样例:
输入:
Goo23good Gooddd
123 GoodoodGGoooddjfhjdGGooo3dkdggggGoood0123
123 GoodoodGGoooddjfhjdGGooo3dkdggggGoood0123
输出:
2
5
代码:
#include<bits/stdc++.h> using namespace std; typedef long long ll; #define pii pair<int, int> #define pll pair<ll, ll> #define mp make_pair #define ios ios::sync_with_stdio(false),cin.tie(0); template <typename T> inline void read(T &x) {char ch=getchar(); int f=1; x=0; while(!isdigit(ch)){if(ch=='-')f *= -1; ch=getchar();} while(isdigit(ch)) {x = (x<<1) + (x<<3) + (ch^48); ch=getchar();} x*=f;} ll qpow(ll x, ll y) { ll a=1, b=x; while(y){if(y&0x1) a*=b; b*=b; y>>=1;} return a;} const int maxn = 100005; bool visit[maxn]; int main(void) { #ifndef ONLINE_JUDGE freopen("a.txt", "r", stdin); #endif string s; while (getline(cin, s)) { memset(visit, 0, sizeof(visit)); int n = s.size(); int count = 0; for(int i = 0; i < n; ++i) { if(s[i] != 'G') continue; int onum = 0; for(int j = i+1; j < n; ++j) { if(visit[j]) continue; if(s[j] == 'o') { ++onum; if(onum <= 2) visit[j] = true; } else if(onum >= 2 && s[j] == 'd') { visit[j] = true; ++count; break; } } } cout << count << endl; } return 0; }
第二题:矩阵中,找最长的严格递增路径
思路:记忆化搜索,f[i][j]表示从[i,j]开始的最长的长度,遍历二维数组,如果已经计算过改点的值,直接返回即可
样例:
输入:
3 3
9 1 4
6 2 8
5 5 7
9 1 4
6 2 8
5 5 7
输出:
5
代码:
#include<bits/stdc++.h> using namespace std; typedef long long ll; #define pii pair<int, int> #define pll pair<ll, ll> #define mp make_pair #define ios ios::sync_with_stdio(false),cin.tie(0); template <typename T> inline void read(T &x) {char ch=getchar(); int f=1; x=0; while(!isdigit(ch)){if(ch=='-')f *= -1; ch=getchar();} while(isdigit(ch)) {x = (x<<1) + (x<<3) + (ch^48); ch=getchar();} x*=f;} ll qpow(ll x, ll y) { ll a=1, b=x; while(y){if(y&0x1) a*=b; b*=b; y>>=1;} return a;} int m; int n; vector<vector<int>> dirs = {{1,0},{0,1},{-1,0},{0,-1}}; int dfs(vector<vector<int>>& arr, vector<vector<int>>& f, int x, int y) { if(x < 1 || y < 1 || x > m || y > n) return 0; if(f[x][y] > 0) return f[x][y]; int curMax = 0; for(auto d : dirs) { int i = x + d[0]; int j = y + d[1]; if(i < 1 || j < 1 || i > m || j > n || arr[i][j] <= arr[x][y]) continue; curMax = max(curMax, dfs(arr, f, i, j)); } f[x][y] = curMax + 1; return f[x][y]; } int main(void) { #ifndef ONLINE_JUDGE freopen("b.txt", "r", stdin); #endif while(cin >> m >> n) { vector<vector<int>> arr(m+1, vector<int>(n+1, 0)); vector<vector<int>> f(m+1, vector<int>(n+1, 0)); for(int i = 1; i <= m; ++i) { for(int j = 1; j <= n; ++j) cin >> arr[i][j]; } int ans = 0; for(int i = 1; i <= m; ++i) { for(int j = 1; j <= n; ++j) { if(f[i][j] == 0) dfs(arr, f, i, j); ans = max(ans, f[i][j]); } } cout << ans << endl; } return 0; }
第三题:n个区间,求最少删除多少个区间,可以让它们彼此不重叠
思路:本质就是一个最长递增子序列长度,但是首先要预处理数据,把区间段排序成升序,然后找最长递增的子序列即可。
答案就是 n - maxLen, 即:最少删除的区间
样例:
输入:
[ [1,2], [2,3], [3,4], [1,3] ]
输出:
3
代码:
class Solution { public: int eraseOverlapIntervals(vector<vector<int> >& intervals) { int n = intervals.size(); if(n <= 1) return 0; sort(intervals.begin(), intervals.end(), [](const vector<int>& l, const vector<int>& r) { if(l[0] == r[0]) return l[1] < r[1]; return l[0] < r[0]; }); vector<int> f(n, 1); int ans = 1; for(int i = 1; i < n; ++i) { for(int j = 0; j < i; ++j) { if(intervals[i][0] >= intervals[j][1]) { f[i] = max(f[i], f[j] + 1); ans = max(ans, f[i]); } } } return n - ans; } };
全部评论
(9) 回帖