每个人的题目可能是不一样的。
T1:把数组里的数拆成素数,要求统计数组中所有数的素数个数和。
贪心拆成2然后统计即可,注意1E6个数,每个数最大为1E9,答案会爆int.
#include <bits/stdc++.h> using namespace std; using LL = long long; using pii = pair<LL, LL>; const int maxn = 1001000; int n; int a[maxn]; signed main() { // freopen("in", "r", stdin); // freopen("out", "w", stdout); while (~scanf("%d", &n)) { LL tot = 0; for (int i = 1; i <= n; i++) { scanf("%d", &a[i]); tot += a[i] / 2; } printf("%lld\n", tot); } return 0; }
T2:n个人排队操作,每个人花费时间为ai,也可以第i个人和前一个人一起操作花费时间为bi,问最少花费时间并且转成要求格式。
DP,f(i,j)维护到第i个人按照j操作时的总最少花费,转移看代码;转换格式感觉数据弱了,不表了。
#include <bits/stdc++.h> using namespace std; using LL = long long; using pii = pair<LL, LL>; const int maxn = 2020; int n; int a[maxn], b[maxn]; int f[maxn][2]; void gao(int second) { int minute = second / 60; second %= 60; int hour = minute / 60; minute %= 60; hour += 8; string suf = (hour <= 12 ? "am" : "pm"); if (hour > 12) hour -= 12; printf("%02d:%02d:%02d %s\n", hour, minute, second, suf.c_str()); } signed main() { // freopen("in", "r", stdin); // freopen("out", "w", stdout); int T; scanf("%d", &T); while (T--) { scanf("%d", &n); memset(a, 0, sizeof a); memset(b, 0, sizeof b); memset(f, 0x7f, sizeof f); for (int i = 1; i <= n; i++) { scanf("%d", &a[i]); } for (int i = 2; i <= n; i++) { scanf("%d", &b[i]); } f[0][0] = f[0][1] = 0; f[1][0] = f[1][1] = a[1]; for (int i = 2; i <= n; i++) { f[i][0] = min({f[i][0], f[i - 1][0] + a[i], f[i - 1][1] + a[i]}); f[i][1] = min({f[i][1], f[i - 2][0] + b[i], f[i - 2][1] + b[i]}); } gao(min(f[n][0], f[n][1])); } return 0; }
T3:n个数字,扔掉任意个,然后再把剩下的数拆成两组和相同的数,问扔掉数字的最小和。
爆搜3^n
#include <bits/stdc++.h> using namespace std; using LL = long long; using pii = pair<LL, LL>; const int maxn = 16; int n; int a[maxn]; int ret = INT_MAX; void dfs(int id, int l, int r, int drop) { if (id == n + 1) { if (l == r) { ret = min(ret, drop); } return; } dfs(id + 1, l + a[id], r, drop); dfs(id + 1, l, r + a[id], drop); dfs(id + 1, l, r, drop + a[id]); } signed main() { // freopen("in", "r", stdin); // freopen("out", "w", stdout); int T; scanf("%d", &T); while (T--) { scanf("%d", &n); for (int i = 1; i <= n; i++) { scanf("%d", &a[i]); } ret = INT_MAX; dfs(1, 0, 0, 0); printf("%d\n", ret); } return 0; }
T4:题意翻译一下就是给一个有向图,问有多少点对可以互相可达。
tarjan求强连通分量,缩点后统计每个强连通分量中的点数,答案就是sum((k-1)*k/2),k为每个强连通分量中的点数,注意开LL.
#include <bits/stdc++.h> using namespace std; using LL = long long; using pii = pair<int, int>; const int maxn = 50050; const int maxm = 600600; typedef struct Edge { int u; int v; int next; Edge() { next = -1; } }Edge; int head[maxn], ecnt; Edge edge[maxm]; int n, m; int bcnt, dindex; int dfn[maxn], low[maxn]; int stk[maxn], top; int belong[maxn]; int in[maxn], out[maxn]; bool instk[maxn]; void init() { memset(edge, 0, sizeof(edge)); memset(head, -1, sizeof(head)); memset(instk, 0, sizeof(instk)); memset(dfn, 0, sizeof(dfn)); memset(low, 0, sizeof(low)); memset(belong, 0, sizeof(belong)); memset(in, 0, sizeof(in)); memset(out, 0, sizeof(out)); ecnt = top = bcnt = dindex = 0; } void adde(int uu, int vv) { edge[ecnt].u = uu; edge[ecnt].v = vv; edge[ecnt].next = head[uu]; head[uu] = ecnt++; } void tarjan(int u) { int v = u; dfn[u] = low[u] = ++dindex; stk[++top] = u; instk[u] = 1; for(int i = head[u]; ~i; i=edge[i].next) { v = edge[i].v; if(!dfn[v]) { tarjan(v); low[u] = min(low[u], low[v]); } else if(instk[v]) low[u] = min(low[u], dfn[v]); } if(dfn[u] == low[u]) { bcnt++; do { v = stk[top--]; instk[v] = 0; belong[v] = bcnt; } while(v != u); } } int main() { // freopen("in", "r", stdin); // freopen("out", "w", stdout); int uu, vv; while(~scanf("%d %d", &n, &m)) { init(); for (int i = 1; i <= m; i++) { scanf("%d %d", &uu, &vv); if (uu == vv) continue; adde(uu, vv); } for(uu = 1; uu <= n; uu++) { if(!dfn[uu]) { tarjan(uu); } } for(int i = 0; i < ecnt; i++) { if(belong[edge[i].u] != belong[edge[i].v]) { in[belong[edge[i].u]]++; out[belong[edge[i].v]]++; } } unordered_map<int, int> vis; for (int i = 1; i <= n; i++) { vis[belong[i]]++; } LL ret = 0; for (const auto x : vis) { LL cnt = x.second; ret += (cnt - 1) * cnt / 2; } printf("%lld\n", ret); } return 0; }
全部评论
(8) 回帖