小红的整数三角形
题号:NC302471
时间限制:C/C++/Rust/Pascal 1秒,其他语言2秒
空间限制:C/C++/Rust/Pascal 1024 M,其他语言2048 M
Special Judge, 64bit IO Format: %lld

题目描述

\hspace{15pt}小红很喜欢整数。现给出平面直角坐标系中的两个互不相同的整点 A\left(x_1,y_1 \right)B\left(x_2, y_2 \right)
\hspace{15pt}现在小红希望能找到另一个整点 C,使得 A,B,C 能够作为顶点组成一个非退化的三角形,且所组成的三角形面积是正整数。
\hspace{15pt}请你帮帮小红。

【名词解释】
\hspace{15pt}非退化三角形:三条边长均大于 0 且任意两边之和均大于第三边的三角形。

输入描述:

\hspace{15pt}第一行输入四个整数 x_1,y_1,x_2,y_2 \left(-10^9\leqq x_1,y_1,x_2,y_2 \leqq 10^9\right)

输出描述:

\hspace{15pt}在一行上输出两个整数 x_C,y_C \left(-10^{10} \leqq x_C,y_C \leqq 10^{10}\right),表示点 C 的横、纵坐标。
\hspace{15pt}如果存在多个解决方案,您可以输出任意一个,系统会自动判定是否正确。注意,自测运行功能可能因此返回错误结果,请自行检查答案正确性。
示例1

输入

复制
0 0 1 0

输出

复制
1 2