数竞选手小r最喜欢做的题型是数列大题,并且每一道都能得到满分。
你可能不相信,但其实他发现了一个结论:只要是数列,无论是给了通项还是给了递推式,无论定义多复杂,都可以被搞成
等差数列。这样,只要他精通了等差数列,他就能做出任何数列题目。
等差数列是数列的一种。在等差数列中,任何相邻两项的差相等,该差值称为
公差。例如数列

就是一个等差数列。 在这个数列中,从第二项起,每项与其前一项之差都等于2,即公差为2。
小r熟知等差数列的各种公式:如果一个等差数列的首项标为

,公差标为d,那么该等差数列第n项的表达式为
等差数列的任意两项之间存在关系
和为

,首项

,末项

,公差d,项数n,同时可得
为什么他这么熟练呢?因为小r在小时候就发现这个公式了。在他三年级的时候,他的老师让学生们做从1加到100的习题。小r很快发现数列的规律,用上面的公式得出了5050的答案。于是小r在后来编写你的教科书的时候,经常把如上公式写成
一个等差数列的和等于其首项与末项的和乘以项数除以2。 顺便一提,小r在证明上面的公式时,使用了自创的伪证法,先做假设再证明,为世人所称道:
先证n=1时该公式成立:等式左边

,等式右边

(需注意在此时首项和末项均为

),两边相等,得证。
再假设n=k时该公式成立,有
现在证明n=k+1时该公式成立:
因为

,所以,得证。
看到这里,你不由得发出赞叹:为什么小r这么强呢?
然而,强如小r,是不屑于计算一些琐碎的计算的。现在小r给了你一个数X,要求你搞出一个等差数列a使得
%3D%5Cfrac%7Bn(a_1%2Ba_n)%7D%7B2%7D%3DX)