牛牛的汉诺塔
题号:NC201839
时间限制:C/C++/Rust/Pascal 1秒,其他语言2秒
空间限制:C/C++/Rust/Pascal 256 M,其他语言512 M
64bit IO Format: %lld

题目描述

汉诺塔是一个经典问题,相传在古印度圣庙中,有一种被称为汉诺塔(Hanoi)的游戏。该游戏是在一块铜板装置上,有三根杆(编号A、B、C),在A杆自下而上、由大到小按顺序放置n个金盘。游戏的目标:把A杆上的金盘全部移到C杆上,并仍保持原有顺序叠好。操作规则:每次只能移动一个盘子,并且在移动过程中三根杆上都始终保持大盘在下,小盘在上,操作过程中盘子可以置于A、B、C任一杆上。

汉诺塔以及其衍生问题往往使用递归来求解,也是学习和理解递归很好的老师。

其伪代码如下
Function Hanoi(n,a,b,c)
    if n==1 then
        print(a+'->'+c)
    else
        Hanoi(n-1,a,c,b)
        print(a+'->'+c)
        Hanoi(n-1,b,a,c)
    end if
end Function 

牛牛很快就理解了代码的意思并且写出了求解汉诺塔的程序,他现在想研究汉诺塔的规律。
请你统计以下信息:A->B,A->C,B->A,B->C,C->A,C->B的次数,以及所有移动的总步数。

输入描述:

仅一行,输入一个正整数n表示汉诺塔的层数。

输出描述:

首先输出6行
A->B:XX
A->C:XX
B->A:XX
B->C:XX
C->A:XX
C->B:XX
分别表示每种移动情况出现的次数
最后输出一行
SUM:XX
表示所有移动情况的总和。
示例1

输入

复制
3

输出

复制
A->B:1
A->C:3
B->A:1
B->C:1
C->A:0
C->B:1
SUM:7

说明

伪代码所示算法的移动序列如下:
A->C
A->B
C->B
A->C
B->A
B->C
A->C
统计:
A->B出现1次
A->C出现3次
B->C出现1次
B->A出现1次
C->B出现1次
总计7次