[HNOI2008]CARDS
题号:NC20063
时间限制:C/C++/Rust/Pascal 1秒,其他语言2秒
空间限制:C/C++/Rust/Pascal 256 M,其他语言512 M
64bit IO Format: %lld

题目描述

小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun很快就给出了答案.进一步,小春要求染出Sr张红色,Sb张蓝色,Sg张绝色.他又询问有多少种方案,Sun想了一下,又给出了正确答案. 
最后小春发明了M种不同的洗牌法,这里他又问Sun有多少种不同的染色方案. 两种染色方法相同当且仅当其中一种可以通过任意的洗牌法(即可以使用多种洗牌法,而每种方法可以使用多次)洗 成另一种.Sun发现这个问题有点难度,决定交给你,答案可能很大,只要求出答案除以P的余数(P为质数).

输入描述:

第一行输入 5 个整数:Sr,Sb,Sg,m,p(m ≤ 60,m+1 < p < 100)。n=Sr+Sb+Sg。 
接下来 m 行,每行描述一种洗牌法,每行有 n 个用空格隔开的整数 X1X2...Xn,恰为 1 到 n 的一个排列, 表示使用这种洗牌法,第i位变为原来的 Xi位的牌。
输入数据保证任意多次洗牌都可用这m种洗牌法中的一种代替,且对每种洗牌法,都存在一种洗牌法使得能回到原状态。

输出描述:

不同染法除以P的余数
示例1

输入

复制
1 1 1 2 7
2 3 1
3 1 2

输出

复制
2

说明

有2种本质上不同的染色法:RGB 和 RBG,使用洗牌法 231 一次,可得 GBR 和 BGR,使用洗牌法 312 一次,可得 BRG 和 GRB。