[NOI2014]随机数生成器NOI
题号:NC17860
时间限制:C/C++/Rust/Pascal 5秒,其他语言10秒
空间限制:C/C++/Rust/Pascal 256 M,其他语言512 M
64bit IO Format: %lld

题目描述

小 H 最近在研究随机算法。随机算法往往需要通过调用随机数生成函数(例如 Pascal 中的 random 和 C/C++中的 rand)来获得随机性。事实上,随机数生成函数也并不是真正的“随机”,其一般都是利用某个算法计算得来的。

比如,下面这个二次多项式递推算法就是一个常用算法:

算法选定非负整数 x0,a,b,c,d 作为随机种子,并采用如下递推公式进行计算。

对于任意 i ≥ 1, xi=(a*x[i-1]^2+b*x[i-1]+c)mod d 这样可以得到一个任意长度的非负整数数列{xi},i≥1,一般来说,我们认为这个数列是随机的。

利用随机序列{xi},i≥1,我们还可以采用如下算法来产生一个 1 到 K 的随机排列{Ti},i=1 to k:

1、初始设 T 为 1 到 K 的递增序列;

2、对 T 进行 K 次交换,第 i 次交换,交换 Ti 和 T[xi mod i + 1] 的值。

此外,小 H 在这 K 次交换的基础上,又额外进行了 Q 次交换操作,对于第i 次额外交换,小 H 会选定两个下标 ui 和 vi,并交换 T[ui] 和 T[vi] 的值。

为了检验这个随机排列生成算法的实用性,小 H 设计了如下问题:

小 H 有一个 N 行 M 列的棋盘,她首先按照上述过程,通过 N × M + Q 次交换操作,生成了一个 1~N × M 的随机排列 {Ti},i=1 to N*M,然后将这 N × M 个数逐行逐列依次填入这个棋盘:也就是第 i 行第 i 列的格子上所填入的数应为 T[(i-1)*M+uj]。

接着小 H 希望从棋盘的左上角,也就是第一行第一列的格子出发,每次向右走或者向下走,在不走出棋盘的前提下,走到棋盘的右下角,也就是第 N 行第M 列的格子。

小 H 把所经过格子上的数字都记录了下来,并从小到大排序,这样,对于任何一条合法的移动路径,小 H 都可以得到一个长度为 N + M − 1 的升序序列,我们称之为路径序列。

小 H 想知道,她可能得到的字典序最小的路径序列应该是怎样的呢?

输入描述:

第1行包含5个整数,依次为 x_0,a,b,c,d ,描述小H采用的随机数生成算法所需的随机种子。

第2行包含三个整数 N,M,Q ,表示小H希望生成一个1到 N×M 的排列来填入她 N 行 M 列的棋盘,并且小H在初始的 N×M 次交换操作后,又进行了 Q 次额外的交换操作。

接下来 Q 行,第 i 行包含两个整数 u_i,v_i,表示第 i 次额外交换操作将交换 T_(u_i )和 T_(v_i ) 的值

输出描述:

输出一行,包含 N+M-1 个由空格隔开的正整数,表示可以得到的字典序最小的路径序列。
示例1

输入

复制
1 3 5 1 71 
3 4 3 
1 7 
9 9 
4 9 

输出

复制
1 2 6 8 9 12

说明

对于样例 1,根据输入的随机种子,小 H 所得到的前 12 个随机数xi为:

9 5 30 11 64 42 36 22 1 9 5 30

根据这 12 个随机数,小 H 在进行初始的 12 次交换操作后得到的排列为:

6 9 1 4 5 11 12 2 7 10 3 8

在进行额外的 3 次交换操作之后,小 H 得到的最终的随机排列为:

12 9 1 7

5 11 6 2

4 10 3

最优路径依次经过的数字为 :12-9-1-6-28。

备注: