阿汤的疑惑
题号:NC15977
时间限制:C/C++/Rust/Pascal 1秒,其他语言2秒
空间限制:C/C++/Rust/Pascal 32 M,其他语言64 M
64bit IO Format: %lld

题目描述

阿汤同学最近刚学数论,他发现数论实在是太有趣了,于是他想让你也感受一下数论的乐趣。现在他给你一个正整数 N 和一个正整数 M,要求你用 N 对 M 进行取余操作,即 N % M,记余数为 S。
但是他发现这样好像并不能让你感受到数论的乐趣,于是他想让你在N 对 M 取余操作的基础上再求出这个余数 S 能分解出多少个不同质因数。

质因数:质因数在数论里是指能整除给定正整数的质数,质数就是只能整除 1 和本身的数,定义 2 是最小的质数。

输入描述:

从标准输入读入数据。
输入包含多组数据,第一行一个整数 T 代表数据组数。接下来依
次描述每组数据,对于每组数据:
第一行输入正整数 N,第二行输入正整数 M

【数据规模】
1≤N≤10^100
1≤M≤2^31-1

输出描述:

输出到标准输出。
对于每组数据,输出一行:
余数 S 能分解出的不同质因数的个数。
示例1

输入

复制
2
68
40
6
180

输出

复制
2
2