It’s universally acknowledged that there’re innumerable trees in the campus of HUST.
You decide to sell some trees one day, and you have known that N orders will come. You even know that each order wouldn’t ask for more than K trees. Now you want to pack some trees into several bundles for more convenient delivery, and you don’t want to unpack them anymore, which means you have to directly use these bundles to satisfy no matter how many trees each order asks for. Though there is no limitation on how many trees you can use to pack and how many trees any bundle consists of, you have to prepare the minimum number of bundles.
Note that one tree can also be packed into a bundle. Each order can ask for different number of trees, also each bundle can contain different number of trees.
输入描述:
Multiple test case.
Each line contains two integer N and K
, the number of orders and the maximum number of trees that one might buy.
输出描述:
For each test cases print the minimum number of bundles you have to prepare.
示例1
说明
In the first sample, you have to prepare 3 bundles of one tree, 2 bundles of two trees, 1 bundle of three trees and 1 bundle of four trees, thus you can deal with any order and 3+2+1+1=7 is the minimum number of bundles.
In the second sample, you just have to prepare bundles of 1,2,4,8,16.