题号:NC13589
时间限制:C/C++/Rust/Pascal 3秒,其他语言6秒
空间限制:C/C++/Rust/Pascal 125 M,其他语言250 M
Special Judge, 64bit IO Format: %lld
题目描述
vigoss18 辞职成功终于逃出了公司,但是没过太久,公司就发现vigoss18 的所作所为,于是派人来把他抓
回去。
vigoss18 必须一直跑路,躲避公司的围捕。可以抽象的看成一个有向图,图中可能存在重边和自环。
刚开始他站在位置1,每单位时间vigoss18 必须从目前站的位置,等概率选择一条边然后移动到对应的节
点上去或者不动(如果当前节点有t条边,则有1/(t+1)的概率选择一条边移动或者原地不动),可以认为每次需
要花费1 单位时间。
他就这样一直跑一直跑,过了很长很长的时间...
公司把你派出来寻找vigoss18,如果能抓到他,你将能升官发财赢取白富美走向人生巅峰。
但是你精力有限,不是太走的开身,所以写了一个程序,来计算vigoss18 在每个位置的概率,可以认为过
了很长时间以后,vigoss18 在每个位置的概率是收敛的。所以你需要告诉上司,他最可能在哪个位置(概率
最大的那个位置)。
你的上司并不想知道过程,他只想知道结果,所以你只需要告诉他这个概率最大是多少即可。
输入描述:
多组输入,保证绝大部分为小数据。
每组输入第一行n m(1<=n<=100,1<=m<=10000),表示n个点m条有向边。
接下来m行,每行u v(1<=u,v<=n),表示有一条有向边从u连向v
输出描述:
算出vigoss18在所有位置的概率,并输出其中的最大值即可。
你的答案与标准答案的误差应保持在1e-6以内。