XOR-pyramid
时间限制:C/C++/Rust/Pascal 2秒,其他语言4秒
空间限制:C/C++/Rust/Pascal 512 M,其他语言1024 M
64bit IO Format: %lld

题目描述

For an array $$$b$$$ of length $$$m$$$ we define the function $$$f$$$ as

$$$ f(b) = \begin{cases} b[1] & \quad \text{if } m = 1 \\ f(b[1] \oplus b[2],b[2] \oplus b[3],\dots,b[m-1] \oplus b[m]) & \quad \text{otherwise,} \end{cases} $$$

where $$$\oplus$$$ is bitwise exclusive OR.

For example, $$$f(1,2,4,8)=f(1\oplus2,2\oplus4,4\oplus8)=f(3,6,12)=f(3\oplus6,6\oplus12)=f(5,10)=f(5\oplus10)=f(15)=15$$$

You are given an array $$$a$$$ and a few queries. Each query is represented as two integers $$$l$$$ and $$$r$$$. The answer is the maximum value of $$$f$$$ on all continuous subsegments of the array $$$a_l, a_{l+1}, \ldots, a_r$$$.

输入描述:

The first line contains a single integer $$$n$$$ ($$$1 \le n \le 5000$$$) — the length of $$$a$$$.

The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ ($$$0 \le a_i \le 2^{30}-1$$$) — the elements of the array.

The third line contains a single integer $$$q$$$ ($$$1 \le q \le 100\,000$$$) — the number of queries.

Each of the next $$$q$$$ lines contains a query represented as two integers $$$l$$$, $$$r$$$ ($$$1 \le l \le r \le n$$$).

输出描述:

Print $$$q$$$ lines — the answers for the queries.

示例1

输入

复制
3
8 4 1
2
2 3
1 2

输出

复制
5
12
示例2

输入

复制
6
1 2 4 8 16 32
4
1 6
2 5
3 4
1 2

输出

复制
60
30
12
3

备注:

In first sample in both queries the maximum value of the function is reached on the subsegment that is equal to the whole segment.

In second sample, optimal segment for first query are $$$[3,6]$$$, for second query — $$$[2,5]$$$, for third — $$$[3,4]$$$, for fourth — $$$[1,2]$$$.